
Global Software Development Process Research at Siemens

Matthew Bass, Daniel Paulish
Siemens Corporate Research, Inc.

Princeton, NJ 08540
{ Matthew.Bass, Daniel.Paulish } @Siemens.com

Abstract

Siemens Corporate Research (SCR) is the
research and development unit of Siemens USA. The
Software Engineering department of Siemens
Corporate Research spends much of its time doing
consulting for Siemens Business Units. As a result,
we have been involved in a large number of software
development projects varying in size, complexity, and
domain. Many of these projects were developed with
globally distributed teams. Over the years, we have
identified best practices, and begun to organize these
practices into more cohesive set of development
processes focused on issues related to global
development. This paper describes our experience
with experimentation, lessons learned from one
specific project, and suggests future steps for global
software development (GSD) within Siemens.

1. Introduction

Siemens is one of the largest developers of
software intensive systems in the world. With a
presence in over 190 countries, it is also one of the
most globally distributed. As software products are
growing in complexity and the organizations that
develop them are also growing in staff size, Siemens
business managers are seeking new approaches to get
new software products quicker to market, while
reducing their overall development investments. One
of the strategies that Siemens has adopted is to move
some of its software development to low cost
countries. The implications of such a decision are
not entirely known. The associated risks, required
changes in the development process, needed
infrastructure changes, and required modifications to
the management practices for successful global
development are not fully known.

2. Data Processing System 2000

The Data Processing System 2000 (DSP2000) is a
software system for acquiring and processing meter
data, from electrical, gas, and water meters. The
meter data is stored and processed so that billing
determinants can be calculated for periodic transfer
to a billing system. The billing system generates the
bills for energy or resource consumers.

The development for DSP2000 was done at four
sites in three countries. SCR staff acted as project
manager and lead architect, and developed one
component for this project. The product is currently
being successfully sold and distributed. This section
describes our experience with the DSP2000 project
as it relates to GSD, section 3 then highlights some of
the lessons learned from our experiences with GSD
projects, and section 4 describes planned next steps
towards improving the state of the practice of GSD
within Siemens.

2.1 Global Analysis

Global Analysis (GA) [1][2] is a technique for
analyzing, categorizing and documenting factors that
influence the architecture and project management of
a system. In the DSP2000, GA was completed early
on during the high-level design for the DSP2000
project. Three types of factors were considered;
organizational factors, technological factors, and
product related factors.

2.1.1 Organizational Factors

Organizational factors may apply only to the
project at hand (as in the case of schedule and
budget), or can impact every product developed by
that organization (as in the case of culture,
development site(s) location, and software
development process).

Two examples of organizational influencing
factors in the DSP2000 project were:

• Technical skills were in short supply, prior
products were Unix-based with local user
interfaces, and marketing required new
products to be Windows-based with web-
based user interfaces.

• Time to market was critical. The market was
rapidly changing, and it was viewed as
critical to quickly get some limited features of
the product to potential users so their
feedback could be solicited.

Two strategies were adopted to address these
organizational factors. In order to mitigate the lack
of technical expertise, it was decided that this project
would exploit expertise located at multiple
development sites, and to invest in training courses
early in the development. As a result of the
criticality of time to market, it was decided that the
product would be released incrementally. In this
way, release dates could be met even if some features
were missing. Additionally, a design strategy was
followed to reuse the current data-acquisition system,
and attempt to use third-party components wherever
possible.

2.1.2 Technological Factors

Technological factors may limit design choices to
the hardware, software, architecture, platform, and
standards that are currently available. Technology,
however, changes rapidly, and so if it is the case that
the architecture has even a reasonably significant
lifetime, then it should be designed with this in mind.

Two examples of technological factors that
influenced this project were:

• An object broker was necessary for meeting
the scalability and availability requirements
within a distributed hardware configuration.

• The database system was expected to change
over time. Oracle 8 was initially specified,
but it was known that new versions would
become available, and some customers would
prefer other vendors.

Microsoft COM was selected to as the object broker,
and a layer was designed in the architecture to
abstract the database in anticipation of future
database changes.

2.1.3 Product Factors

Product factors include features of a product as
well as qualities like performance, dependability,
security, and cost.

Two examples of product factors that influenced
this project were:

• This product was to be designed as a product
line. In order to support a product line
architecture, the graphical user interface
(GUI) had to be able to accommodate many
different types of users for different
applications.

• The required scalability and anticipated
performance requirements of the system were
another influencing factor. The DSP2000
was intended for industrial and commercial
applications where thousands of meters
would be handled. While it wasn’t originally
specified for the residential market, where
millions of consumers would be required, it
was known that this might be a future
possibility.

A web-based GUI was select to address the needed
flexibility. In order to allow for potential unknown
market performance requirements, we anticipated
that a scalable distributed platform was necessary.

2.2 Project Planning

The DSP2000 software development was planned
as a sequence of incremental engineering releases,
the first of which consisted of a “vertical slice” of the
architecture, which functioned as a prototype of the
architecture. The last planned release was the first
set of functionality that was sold as a package to a
customer.

We found that a six to eight week cycle time for
each iteration worked best. Some of the release dates
were driven by trade shows, at which time a new
release with the latest functionality was required.
Particularly in light of our global development, we
found that one of the best means of communication
was via the system itself. It was difficult to fully
understand and discuss the explicit and implicit
requirements without an appropriate prototype. The
system itself turned into the common language for all
involved, facilitated by the web-based GUI.

The planning process itself was complicated by
the distributed nature of the project. What ended up
working well was to distribute drafts of the proposed
schedule and task assignments for each incremental
release to the team members. Often, we would get
feedback in the form “This feature cannot be
achieved in the time frame provided”, or “I am

planning a vacation during these weeks”. A second
version of the schedule committing the release dates
and feature sets would then be distributed.

Another item that is useful in global project teams
is an explicit statement of the overall project goals.
An example of such a statement is “Quality will have
a higher priority than schedule, which will have a
higher priority than functionality.” Such an explicit
statement helps project managers make the inevitable
trade-offs that must be made right before a release.
We have found in the past that cultural bias exists
that will influence such trade-offs at a local level,
unless such an explicit statement of goals exist.

2.3 Project Management

Each development site had a local manager to
manage the team members at that site. There was
also an overall project manager, and a project
manager for each software application package
development. As a result there was overlapping
management responsibility for achieving the project
goals. These managers had to negotiate individual
work assignments. In practice, however, most
potential conflicts were resolved when the proposed
development plan was distributed for feedback.

The chief architect was responsible for decision
making and resolving technical conflicts for the
application package. Analogous to the overall
project manager, the chief architect was the overall
technical manager. In practice, both the technical
manager and the project manager reviewed key
technical decisions.

An engineer was assigned responsibility to each
subsystem. This engineer was responsible for the
detailed design and implementation of this
subsystem.

Project status tracking was done during weekly
teleconferences. Each team member was encouraged
to report on his development progress and to raise
information or issues to be shared with other team
members.

3. The Influence of Global Development

While the decision to develop DSP2000 across
multiple sites was primarily motivated by the lack of
resources with the required technical skills, the
implications of that decision were felt in the project
planning, project management, architecture, and
design of the system.

Communication is a key issue in most projects,
but additional barriers to effective communication

exist in globally distributed projects. Several
strategies were found to be useful in the DSP2000
project in overcoming the communication barriers.
Those strategies include:

• Explicitly documented project goals – in the
absence of clear direction, local cultural and
personal biases are going to influence
decisions. The resulting choices may not be
in line with the overall goals of the project.

• Incremental development – an incremental
release schedule with fairly short cycles helps
to facilitate communication, and highlight
ambiguities and misunderstandings. While
this can be useful in many projects, co-
located teams may have options that are not
available to a globally distributed team.

• Internationally aware calendar – it was
important that weekly teleconferences take
place to monitor status, and highlight issues.
It was important (and often difficult) that time
zones and local holiday schedules be taken
into account when scheduling these meetings.

• Well-partitioned architecture – in order to
facilitate work break down across multiple
sites, the architecture needed to reflect the
organizational structure of the project. There
needed to be well-defined components or
subsystems with understood dependencies for
each site. These components or subsystems
also needed to take into account the technical
skills of the staff at the responsible
development sites. As it turned out, the
decision to distribute the development
globally had a large impact on the
architecture.

• Communication of progress – in the DSP2000
project, the Uniform Resource Locator (URL)
for the test system was made available for all
the team members and their management.
This was a big morale boost for the team,
since everyone was aware of the rapid
progress being made. The result was a much
greater sense of team then would otherwise
have been possible in a globally distributed
project.

4. Current Research Focus

We were pleased with our experience on the
DSP2000 project. We feel that many of our
approaches were validated based on the success of
this project. Ideally the decision to use distributed
development teams would result from influencing

factors relating to the project in question. More and
more, however, this is not the case. Distributing
development to low cost countries has become a
cost-saving strategy for many organizations.
Siemens is no different. It is not clear what the
impact of such an approach has on the bottom line.
While the hourly development cost may be reduced,
extra effort is likely to be spent on project
management, architectural design, requirements
engineering, and so forth.

SCR is currently in the process of codifying past
experience in the form of questionnaires, checklists,
processes, and other decision aids to assist in the
successful application of global software
development. We are attempting to correlate project
characteristics with proven strategies in order to
better establish criteria for success for given projects.

One area where we are planning additional work
is the experimental application of a reference process
for GSD. Our process includes best practices from
requirements engineering, software architecture
design, and organizational patterns. Engineering
rules of thumb are used to plan projects, specify the
size of software components, the division of
responsibilities between a central product

management team and remote component
development teams, metrics, tools, and operational
procedures. The experimental projects are used as
case studies to further support the identification of
best practices.

We feel that we have a good start in
understanding some of the issues related to
successfully managing a global software
development project. We now need to further
substantiate, refine, and transfer our approach to the
Siemens operating companies.

References:

[1] Hofmeister, C., Nord, R., and Soni, D.,
Applied Software Architecture, Addison
Wesley, Massachusetts, 2000.

[2] Paulish, D.J., Architecture-Centric Software
Project Management, Addison Wesley,
Massachusetts, 2002.

