

Transitioning from a Co-Located to a Globally-Distributed Software

Development Team : A Case Study at Analog Devices Inc.

David Boland Brian Fitzgerald
Analog Devices University of Limerick
david.boland@analog.com bf@ul.ie

Abstract

Global software development has become an
extremely important issue for organizations at present in
the climate of increasing tendency towards globalization
and global outsourcing. A number of studies have been
conducted which have identified a set of problematic
areas which are common across projects, including
language and cultural differences, trust factors,
communication across temporal and spatial distances,
lack of shared contextual awareness. This study of global
software development at Analog Devices Inc. (ADI) is
especially noteworthy for a number of reasons. Firstly,
the project has recently moved from a co-located to a
globally-distributed one, and thus the team had already
had experience of being co-located, a factor that has not
typically been the case in the studies published to date
where teams are being established who have not
previously been co-located. Also, as language and
cultural factors were not an issue, the study was able to
focus on the problems of communication over temporal
and spatial distances. The study discusses how ADI
attempted to address these problems and identifies the
initiatives that worked well, and, more importantly, those
that did not work as well. Among the findings was the fact
that trust, which had been very solidly established among
team members during co-location, was significantly
eroded as the project team was reconstituted on a
distributed basis.

1. Introduction

There have been several documented studies on
globally distributed software development teams [e.g.
1,2,3,5,7, 9,10]. A common feature in most of these
studies, however, has been that the teams at the various
development sites have had little or no previous
experience with each other. Also, many of the case
studies have involved very large development teams and

substantial geographical and temporal distances (i.e.
greater than 8 hours). This particular case study, however,
was able to observe a very small development team (less
than 20 developers), that had worked together for four
years and were being redistributed into a global
development team across two development sites; one in
the United States and the other in Ireland. Many common
global development problems including language and
culture were not an issue and this allowed us to
concentrate on how communication and temporal
problems affected the group and how they attempted to
overcome them.

The paper is structured as follows: The next section
provides some background on the case study company,
Analog Devices Inc. Following this, the procedures and
processes that were established in the move from co-
location to a distributed team are identified. The next
section discusses the success of these procedures and
processes, and also identified the problematic areas where
these did not work as well. Finally, the conclusions and
implications of the study are addressed.

2. The Company

Analog Devices Inc. (ADI) is a world-leading
semiconductor company specializing in high-performance
analog, mixed-signal and digital signal processing (DSP)
integrated circuits (ICs). ADI currently has a worldwide
workforce of approximately 8,600 employees, including
3,100 engineers. There are development/manufacturing
facilities in the United States, Ireland, United Kingdom
and the Philippines.

Analog Devices is one of the few semiconductor
companies that have an internal division that provides
automatic test equipment (ATE) for the ICs the company
produces. Analog Devices’ ATE division is called the
Component Test Systems (CTS) division. The latest ATE
platform at CTS has been in development since 1999 and
for all that time the entire development team, both
hardware and software engineers, have been co-located.

In 2003, it was decided to distribute some of the team
members to the development facility at Limerick, Ireland.
The primary purpose for the relocation was to ensure that
CTS was better represented at the remote site. This would
provide better support to the local customers and their
concerns/issues would be more accurately relayed to
CTS.

3. Creating a Globally Distributed
Development Team

There are many problems to be addressed when
establishing a globally distributed development team,
including, for example, language and cultural differences,
trust factors, communication across temporal and spatial
distances, lack of shared contextual awareness [2, 4, 6, 8,
9]. CTS, however, believed that the creation of their team
would be successful as some of these problems would not
be an issue. The problems included:

1. Language. All the members of the team spoke

English and used a common vocabulary for identifying
specific hardware or software components. Therefore, the
team should have no difficulty understanding each other.

2. Culture. Although not all members of the team
were from the same geographical region, they had been
working together for four years at the time of the move to
a distributed team, and thus had developed their own
‘CTS’ culture. Unintentional rudeness, hostility or other
communications issues should not be a problem.

3. Trust. The developers had established strong
levels of trust between each other as a result of working
together for a long time.

Therefore, CTS was able to concentrate on addressing

the remaining global development problems of
communication across temporal and spatial distance, and
shared contextual awareness. The following
procedures/processes were enacted to address these
issues.

Single Software Manager

Due to the size of the development team, it was
decided to continue with one software manager for all
developers across all sites. The software manager is
responsible for assigning tasks that will reduce cross-site
dependencies especially with regard to expert
dependencies (i.e. assign tasks to the particular subsystem
expert directly or have experts and developers co-
located).

Weekly Task Report

To facilitate the work of the software manager each
developer was required to submit a task report at the
beginning of each week. The report includes a list of their
specific goals for the week and a summary of their
progress for the previous week. The report also indicates
if the developer intends to make any deliveries during the
week (i.e. check their work into the main source tree).
This reporting process enables the software manager to be
aware of work progressing across all the development
sites and provides the necessary information to coordinate
tasks among the developers.

Delivery Report

A new check-in procedure was introduced to ensure
each developer was kept aware of all the work
progressing at each development site. At check-in the
developer must submit a report outlining a description of
the changes/features they are checking into the main
source tree. This description includes the specific files
(source code, documentation, etc) that have been changed
or added. The report also includes the primary purpose
behind the delivery and how to test the changes/new
features.

New Communication Tools

CTS developers rely heavily on informal
communication to design, implement and debug their
systems. To help facilitate informal communication
across the development sites, developers were encouraged
to use AOL’s Instant Messenger (IM). Microsoft’s Net
Meeting was also made available to all developers.

Quarterly meetings

Once a quarter all the developers are gathered together
to meet face-to-face for one week. This business trip is
called a ‘sync up’ trip. Development goals and future
projects are discussed but the primary purpose for the trip
is to increase the team’s morale and to maintain the
camaraderie between the developers.

4. Results

The globally-distributed development team has been
operational for four months. In general, the group is
performing well but communication and temporal
problems have resulted in reduced productivity, trust and
morale levels. The following are the procedures and
processes which have been initiated and seem to be
working well:

Software manager and weekly task reports – Reduced
inter-site dependencies

The software manager was able to make good use of
the weekly task reports and has been successful at

assigning the majority of tasks between the sites
appropriately.

Delivery reports - Maintained awareness and trust
levels

The delivery report has been successful at maintaining
group awareness and has made it easier for each
developer to know who is working on what, who are the
experts on particular subsystems, the problems being
addressed and the problems outstanding. This procedure,
if combined with the absence of other communication
problems, was perceived to be sufficient at maintaining
trust levels between the developers. Other communication
problems, however, did become evident and thus eroded
this procedure’s effectiveness in this area.

Quarterly sync-up meetings – Maintained morale and
motivation levels

These trips have proven to be very successful and
developers have commented on feeling ‘energized’ and
highly motivated after meeting with all the team
members.

Friendship – An important contributor to awareness

Some of the developers had become good friends
during the period they were co-located. These friendships
proved invaluable to maintaining informal
communication channels between the development sites.
When these developers needed to discuss an issue,
through either synchronous or asynchronous
communication channels, they invariably discussed other,
unrelated, issues. Discussions of this nature are a critical
component of software development [10]. At CTS these
discussions gave each developer greater insight into the
particular operations at each site and resulted in greater
overall awareness.

However, it was also the case that in some areas, the

procedures and processes initiated did not work as well as
anticipated:

Communication Tools - Not as effective as hoped

All the developers took the opportunity to use IM but
they found that the tool was only adequate for
transmitting yes or no style questions. Net Meeting was
never used by the developers due to the effort it required
to setup and use. Both, IM and Net Meeting are primarily
synchronous communication tools and developers
indicated that they prefer to use the telephone to converse
if an opportunity for synchronous communication is
available. This suggests that some of the technology for
synchronous communication which is commonly
provided does not afford developers sufficient richness as
a communication to be perceived as useful.

Communication levels - Did not match co-located
levels

Overall, the communication bandwidth was not
adequate to compensate for the richness of informal
communication between co-located developers. As a
consequence, minor issues, usually discussed through
informal communication channels [10], were not
discussed between the development sites. This resulted in
the introduction of bugs into the system. Also feedback
on successful deliveries, an important contributor to
morale, was completely lacking. Feedback on successful
deliveries had in the past been usually done at CTS
through informal channels via chance meetings with end
users or other developers. Due to the lack of informal
communication, however, many developers have stopped
getting this feedback and thus their morale has been
adversely affected.

Remote experts - Led to productivity and trust
problems

When a developer is working with unfamiliar code and
the subsystem expert is co-located, the developer would
seek their advice on the change/feature they intended to
make. The time taken to converse with the expert is
usually only a few minutes but if the expert is remote this
time can become several hours or even days. Thus in the
interests of rapid development most minor changes are
made to the subsystem without consulting the expert [10].
These changes, however, may have overlooked subtle
design considerations within the subsystem and thus have
introduced bugs or other problems.

When these problems become evident (either through
expert analysis of the delivery report or errant runtime
behavior) significant time is wasted at each development
site to address the issue. The level of trust between the
expert and the particular developer is also reduced.
Merely raising the newly discovered problem with the
group can also adversely impact morale, especially if the
expert is not very ‘diplomatic’ at pointing out the
problem. Thus, the previous high level of morale and trust
that had been built up over the years between developers
was possibly eroded somewhat.

Time zone differences - Led to productivity loss

Time zone differences are fundamental source of
difficulties for a globally distributed development team
[1, 6, 7, 10] and this was no different at CTS. Each day
developers arrive to work with an inbox full of questions
and other issues from the remote site. To resolve these
issues takes significant time for the developer and thus
their productivity is affected. Developers indicated that
the majority of these issues could actually be resolved
quickly, if synchronous communication was available.
Also, even when synchronous communication would be
possible, the extra effort to try accomplish a rich and

detailed interaction through a narrow communication
channel such as IM would also affect productivity.

5. Conclusion

The new global development team at CTS is
performing at acceptable levels. It is interesting, however,
that given the ability to concentrate on communication
and temporal problems the team could not retain the level
of productivity it enjoyed when all the members were co-
located. Most of the loss in productivity was a result of
inadequate processes that were established to address the
geographical and temporal distances. There were also
several unexpected problems, including the effort
required to maintain a globally-distributed development
team. This has resulted in an increased workload for some
of the developers and thus resulted in a drain on their
productivity.

Today, some developers are occasionally failing to
follow all of the processes due to project deadlines,
workload or other issues. Thus productivity, awareness,
trust and other areas will begin to be adversely impacted
unless the process can be improved.

Clearly a zero cost, synchronous communication
channel that can work around time zones would
drastically improve GSD – so we need either a Star Trek
transportation device or a time machine! In the somewhat
unlikely event of either appearing in the foreseeable
future, we will continue to work on the problems and
issues identified here.

6. References

[1] Kiel, L., “Experiences in Distributed Development: A
Case Study”, ICSE Workshop on Global Software
Development, May 2003.

[2] Pyysiainen, J., “Building Trust in Global Inter-
Organizational Software Development Projects: Problems
and Practices”, ICSE Workshop on Global Software
Development, May 2003.

[3] Passivaara, M., “Communication Needs, Practices and
Supporting Structures in Global Inter-Organization
Software Development Projects”, ICSE Workshop on
Global Software Development, May 2003.

[4] Damian, D., Chisan, P.A., and Corrie B., “Awareness
meets requirements management: awareness needs in
global software development”, ICSE Workshop on Global
Software Development, May 2003.

[5] Oppenheimer. H..L., “Project Management Issues in
Globally Distributed Development”, ICSE Workshop on
Global Software Development, May 2002.

[6] Carmel, E., and Agarwal, R., “Tactical Approaches
for Alleviating Distance in Global Software
Development”, IEEE Software, March/April 2001.

[7] Battin, R.D., Crocker, R., Kreidler, J., and
Subramanian, K., “Leveraging Resources in Global
Software Development”, IEEE Software, March/April
2001.

[8] Herbsleb, J., and Mockus, A., ”Challenges of Global
Software Development”, 7th IEEE International Software
Metrics Symposium, April 2001.

[9] Herbsleb, J., Mockus, A., Finhost, T.A., and Grinter,
R.E., “Distances, Dependencies, and Delay in a Global
Collaboration”, ACM Conference on Computer-
Supported Cooperative Work, December 2000.

[10] Herbsleb, J., and Grinter, R.E., “Splitting the
Organization and Integrating the Code: Conway’s Law
Revisited”, ICSE Workshop on Global Software
Development, May 1999.

