
Using Iterative and Incremental Processes in Global Software Development

Maria Paasivaara and Casper Lassenius
Helsinki University of Technology

Software Business and Engineering Institute
POB 9210, FIN-02015 HUT, FINLAND

Maria.Paasivaara@hut.fi, Casper.Lassenius@hut.fi

Abstract

Iterative and incremental development seems to be
a viable approach providing several benefits in inter-
organizational distributed software development. This pa-
per presents initial results from an interview study on the
usage of iterative and incremental development in inter-
organizational distributed software development projects.
We describe identified practices, such as delivery synchro-
nization, design and code reviews, communication empha-
sis, feature-based development, behavioral patterns, and
frequent deliveries. We also present the benefits that the
use of these practices brought, such as transparency of
progress, increased developer motivation due to rapid feed-
back, flexibility regarding changes, the possibility to involve
subcontractors early, ensuring joint understanding of re-
quirements, and the avoidance of “big bang” integration. It
seems that the advantages of using the practices overweigh
the extra communication and coordination cost they incur.

1. Introduction

Global inter-organizational software development, in-
cluding outsourcing, subcontracting and partnerships, is be-
coming increasingly common. Projects developing gen-
uinely novel products are often faced with uncertainty re-
garding, e.g., requirements and implementation technolo-
gies. However, subcontractors or partners often need to be
involved long before these uncertainties can be resolved. In
such projects, the parties cannot receive clear requirement
specifications at the beginning. Instead, close cooperation
and communication between the parties is required during
the whole project, as the project both builds a product and
tries to understand what to build at the same time. In these
kinds of projects, problems often arise, since practices and
processes needed for collaborating across distances and or-
ganizations are neither well understood in theory, nor typi-
cally established in practice [9].

For software development facing uncertainties and un-
predictable changes, literature suggest the use of iterative
and incremental development (IID) as a process model,
since it enables fast reaction to changes [6]. IID means
that the system is grown via iterations, incrementally adding
new features [6]. Global software development literature
contains some reports of good experiences of using IID also
in distributed settings (e.g. [1, 2]). However, these studies
do not report in detail how IID should be implemented and
used successfully in distributed projects nor what benefits
and drawbacks its use brings.

In our interview study concentrating on collaboration
practices in globally distributed projects, we noticed that
IID was used in many of the projects studied and that these
projects had gained several advantages from its usage [9]. It
seems that IID suits distributed development extremely well
and helps reduce problems caused by distribution. How-
ever, IID also requires close collaboration and communica-
tion, which can be hard to achieve in distributed develop-
ment.

In this paper we report experiences of using IID in five
globally distributed inter-organizational software develop-
ment projects. We present some interesting findings of how
companies are using IID in their distributed projects and
what kind of benefits they have gained. Since our larger
study concentrated on all collaboration practices used in
these projects, we could not yet go very deep into IID re-
lated practices. The purpose of this paper is therefore to
give an overview of our findings related to the usage of IID
in distributed development, as well as to motivate further
research into its use, benefits and drawbacks.

The rest of this paper is structured in the following way:
The next section briefly presents related literature. After
that we describe the research methodology and introduce
the case companies and projects studied. In the results sec-
tion we present the experiences we collected from our case
projects. Finally, we present a short discussion of the results
and their managerial implications, as well as give ideas for
future work.

2. Related Work

Global software development literature lists many chal-
lenges related to distributed development, e.g., interdepen-
dencies among work items that are distributed, difficulties
of coordination, difficulties of dividing the work into mod-
ules that could be assigned to different locations, conflict-
ing implicit assumptions that are not noticed as fast as in
collocated work, and communication challenges [8]. Lit-
erature suggests dividing the work into separate modules
that can then be distributed to different sites to be developed
[4]. These modules should be so independent that commu-
nication between sites can be minimized [4]. The authors
emphasize that it is possible to split only well-understood
products where architecture and plans are likely to be sta-
ble. However, in a development environment with a lot of
uncertainties, dividing the software into modules and spec-
ifying the modules in detail up front is often impossible.
Moreover, first specifying and dividing work and subse-
quently integrating all in “a big bang” is challenging, since
integration can cause huge unexpected problems. As a so-
lution Battin et al. [1] suggest an incremental integration
plan, which is based on clusters and shared incremental
milestones to avoid “big bang” integration. This strategy
was used successfully at Motorola. Ebert and De Neve
[2] provide similar experiences on the usage of incremen-
tal development at Alcatel, where they developed each in-
crement within one dedicated team and based their progress
tracking on successfully integrated and tested customer re-
quirements. The authors report that a stable build proved
to be one of the key success factors and that the globally
applied continuous build improved the project’s cycle time.
Neither Alcatel nor Motorola report their integration inter-
vals, but it seems that they did not use very frequent reg-
ular build cycles, such as daily or weekly builds. How-
ever, even very frequent builds are possible in distributed
development. Karlsson et al. [5] report using daily builds
and feature-based development successfully in distributed
projects at Ericsson.

IID is a core practice in agile methodologies for col-
located projects [6, 7], but its use in distributed develop-
ment has not yet received much attention. Fowler [3] and
Simons [11] recently reported their experiences on using
agile methods in offshore software development projects.
According to Simons [11], an iterative model seems to
work well in distributed projects and can eliminate some
of the problems that distribution brings. Continuous inte-
gration and build verification tests solve integration prob-
lems in small steps and avoid large integration problems
at the end of the project. Moreover, IID provides in-
creased visibility into project status, which makes it eas-
ier for project managers and customers to follow project
progress [11]. Fowler [3] discusses the suitable iteration

lengths for offshore projects and concludes that iterations
cannot be shorter than two weeks, because of the commu-
nication overheads of distributed development, and two to
three month iterations can already be too long.

This short literature review shows that IID seems to be a
viable process model for distributed software development
projects, providing several advantages. However, the re-
ported experiences of its use in distributed environment are
still quite limited. We believe that collecting more real-life
experiences of the usage of IID and the gained advantages
would be helpful to managers designing their distributed
projects. In this paper we report our initial research results,
discuss the benefits of IID in distributed inter-organizational
development, and outline ideas for future research topics.

2.1. Research Methodology

The research presented in this paper follows the case-
study approach [12] and is a part of a larger multiple case
study [9]. The aim of the larger study was to collect success-
ful collaboration practices from inter-organizational soft-
ware development projects. We used purposeful sampling
[10] and selected ten projects from eight companies that we
knew used software subcontractors and that we expected
to be experienced in inter-organizational software develop-
ment. We selected projects that demanded constant col-
laboration and lots of communication between the parties,
e.g., due to a high degree of uncertainty, dependencies and
changing requirements.

One of the successful practices we found in the larger
study was the use of iterative and incremental development.
From the ten projects we studied, five used an IID model.
In this paper we report experiences collected from those
five projects. In these five projects we performed 29 semi-
structured interviews, each lasting 2–3 hours.

After our first interview round and data analysis we no-
ticed that IID was a central theme in these five projects. We
also noticed that project A was the most interesting project
in this sample regarding IID. Therefore we chose to do one
extra interview with a manager from that project concen-
trating only on experiences of IID. We had interviewed this
person also during our first interview round and wanted to
ask more detailed questions on IID. Basic information about
the projects and the number of interviewees is shown in Ta-
ble 1. The next paragraphs provide short descriptions of the
studied projects.

Project Awas a new product development project with
lots of uncertainty concerning requirements and technology.
The German office of a Finnish customer company did this
project with the help of two new subcontractors, one from
Germany and one from Ireland.

Project Bwas from the same Finnish customer company
as project A. This project also contained a lot of uncertainty

Table 1. Case project interviews
Case projects A B C D E

#
of

in
te

rv
ie

w
s

Partnership
manager

1 2 1 - 1

Process
developer

1 1 - - 1

Project
manager

1 2 3 2 3

Team
member

- - 2 - 1

Sub-
contractors

- 1 5 - 1

All 4 5 11 2 7

Industry
Tele-
com

Tele-
com

Fi-
nance

Inter-
net
SW

Be-
spoke
SW

Distribution
(# of sites)

Eu-
rope
(3)

Eu-
rope
(4) &
North
Amer-

ica
(1)

Eu-
rope
(3)

Eu-
rope
(1) &
Asia
(2)

Eu-
rope
(6)

regarding requirements and technology. Projects A and B
were both subprojects of larger product programs. Project
B used a Finnish subcontractor with sites in Finland and
Hungary. The customer company had sites involved both in
Finland and in the US.

Project Cwas a a large new product development project
done by a Finnish company. Additional resources were as-
signed from its newly acquired subsidiaries in Denmark and
Switzerland.

Project Dwas a development project for a customer spe-
cific system carried out by a small Finnish company, which
had its sales and project management in Finland. All devel-
opment work was performed in a partly owned subsidiary
in India.

Project E developed a well-defined customer specific
system and was distributed to six sites. In addition to the
Finnish customer company’s three own sites, also a sub-
sidiary in Estonia and a subcontractor with two sites in Fin-
land were involved.

3. Results

In this section we first introduce our findings on how
companies were using IID in distributed settings. The com-
panies used practices such as synchronization of deliver-
ies, design and code reviews, emphasis on communica-
tion, feature-based development, behavioral patterns, and
frequent deliveries. Then, we present some of the benefits
of using IID, such as transparency of progress, increased
developer motivation due to instant feedback, flexibility to
do changes and start early with subcontractors, ensuring un-
derstanding of requirements, and the avoidance of big bang

integration. To summarize, our results seem to indicate that
IID is a suitable approach for distributed projects and that
more detailed studies on the methods and practices of using
it are needed.

3.1. Identified Practices

Delivery synchronization In an inter-organizationally
distributed project different partners might have different
delivery and integration cycles, but our case studies show
that synchronizing the delivery and integration cycles be-
tween participants is beneficial.

In project A the original plan was to use the waterfall
model, but after some quality and schedule problems the
customer company and the Irish subcontractor started to use
an iterative development model with weekly builds. How-
ever, getting used to this new weekly rhythm was not easy.
Especially coordinating the work between different teams
and specifying the work well enough required learning. The
customer tested each build once a week for one day and af-
ter that everybody got this tested build as a new baseline.
During the early phases of iterative development the teams
learned that it was better to develop only small additions at
a time to avoid problems. The German subcontractor de-
livered in longer intervals, only once in 1-3 months. This
caused additional work in the integration phase, because the
amount of new code was large and not always compatible
with the baseline. Finding bugs from 1–3 months worth
of work was not easy. In this project the baseline was avail-
able to everyone through a common repository or its replica.
This made it possible for all partners to test their new code
against the baseline before integration.

Project B faced problems with delivery cycles of differ-
ent length, since two sites used one-week iterations, and one
site had a two-month cycle. This led to problems for the
subcontrator, since it ended up waiting up to two months
for fixes from the customer site using long iterations.

Our interviewees from projects A and B emphasized that
when using IID it is important that all participants synchro-
nize the iteration cycles, i.e., use the same length for itera-
tion cycles and deliveries. If this is not done, problems will
occur.

The iteration and delivery cycles used varied between
projects and also between project phases, e.g., in the begin-
ning they could be longer and in later intensive phases they
were shorter. In project B, early phases used three month
increments, and the late phases weekly deliveries.

Design and code reviews Design and code reviews
seemed to be useful in distributed projects with distant sites
or subcontractors. These reviews are early checks that the
distributed teams have understood the requirements cor-
rectly and are doing what they are supposed to do. In later

stages, the deliveries of code fulfill this need. The dis-
tributed sites also felt that these reviews were very useful
since they got immediate feedback on their work.

In project C iterations were used only with the com-
pany’s Swiss subsidiary. Their work consisted of three
months work with two planned iterations. This project was
the first collaboration effort after the Swiss subsidiary had
been bought, therefore starting the project required similar
efforts as with subcontractors. Before the coding became
intensive the customer’s Finnish contact person visited the
Swiss team twice, first having a design review and then a
code review. After that the implementation could safely
start and everybody knew that the work was on the right
track.

Also in project E code reviews were used in the early
phases of the project with the subcontractor and the for-
eign subsidiary. These reviews were very much appreciated
since developers got immediate feedback on their work.

Emphasis on communication Communication require-
ments in distributed projects using IID and therefore col-
laborating closely are very high. Especially the projects that
had weekly integration cycles, A and B, found communica-
tion as a very important prerequisite to be able to work that
fast.

Project A had weekly integration meetings, where in-
tegration related problems were discussed. These meet-
ings made it possible to learn from mistakes already in
the early phases of development. Project progress mon-
itoring also took place during these meetings: only tasks
that had passed the tests and been integrated into the build
were regarded as ready. Subcontractors could not partici-
pate in these meetings, because of security issues concern-
ing this totally new product, but the customer had project
managers that represented each of the subcontractors in the
meetings and delivered information to the subcontractors.
In this project only the Irish subcontractor participated in
the weekly cycle. Frequent communication with this sub-
contractor was ensured by having their staff sitting at the
customer’s premises. Ad-hoc communication and meetings
were encouraged in this project. Also the “behavioral pat-
terns” used in project A, and described later on, are closely
related to emphasizing fast communication and getting an-
swers quickly.

Project B had a normal weekly face-to-face meeting in
all its teams. The following day project managers both from
the customer company and the subcontractor had a weekly
teleconference. The subcontractor’s team leaders could also
participate in this meeting if they deemed it necessary; oth-
erwise they could read the meeting memos.

Both projects A and B had higher-level monthly meet-
ings. In project A they were called R&D meetings. In
Project B they were project steering group meetings, which

were organized every time at different project sites to en-
able both managers and developers from the different sites
to meet face-to-face.

Project C, having only two iterations, also found frequent
communication to be an important factor for the project’s
success. The Finnish customer company had one person re-
sponsible for all communication with its Swiss subsidiary.
This person felt that his task was to answer all questions as
soon as possible. These fast answers were very much appre-
ciated by the Swiss developers. Moreover, this contact per-
son had three collocated stays with the team in Switzerland,
each lasting about one week. This, of course, facilitated
communication and built trust, which was also regarded im-
portant.

Project D delivered a customer specific system using
IID. The main contractor was a Finnish company that used
its partly owned Indian subcontractor as a development re-
source. The Finnish office negotiated the requirements with
the customer, made a requirements specification document
and delivered it to India. The subcontractor’s project man-
ager commented on the requirements by email and asked
detailed questions. The Finnish project manager answered
the questions by email and discussed difficult issues through
chat. The aim was not to create a perfect specification, since
the project’s customer could not provide that. Instead, the
project was specified to such a level of detail that the Indian
subcontractor could develop an initial version of the system.
After the delivery of this initial version the Finnish main
contractor commented on it. And then, after some improve-
ments, also the Finnish customer commented on the system.
The project had several of these comment-improvement
rounds. During the whole development, the Indian develop-
ers were encouraged to ask questions through chat from the
Finnish main contractor’s project manager. The customer
was also able to monitor project progress by reviewing the
code that the Indian developers checked in to a repository
located in Finland several times a day. This well function-
ing communication process was used in all projects between
this main contractor and its Indian subcontractors.

Feature-based development Project A had clearly sepa-
rate sub-areas that could be given to each of the subcontrac-
tors. Because builds were weekly and the customer wanted
to do functionality testing, the work had to be coordinated
quite tightly so that all code affecting certain functionality
would be ready at the same time. This feature-based devel-
opment meant that small increments done in different mod-
ules had to be evolving in good synchronicity, in order to
enable proper testing and to avoid difficult merging of code
later on. In Project A, the customer’s project manager made
a monthly plan of the tasks to be performed, and the sub-
contractors’ project managers made weekly plans of their
internal tasks.

Behavioral patterns Project A had noticed that using an
IID model in distributed development did not automatically
bring all necessary practices needed for successful coop-
eration. This project developed additional practices they
called “behavioral patterns” to complement the develop-
ment model. These practices cannot easily be described in
process descriptions but are very essential to IID according
to our interviewee from project A. He ensured that in co-
operation with subcontractors and partners these practices
have been equally valid and important as in internal devel-
opment. According to him, project A had 16 behavioral
patterns, that were developed during the project concerning,
e.g., management, personal behavior, and the use of tools
and work processes. Our interviewee presented three ex-
amples of the practices that, based on his experience, were
important for the success of their very short-cycled IID pro-
cess.

A practice called “immediate escalation of issues”,
means that problems have to be brought up right away. The
“project manager always available” practice is closely re-
lated to the previous one, meaning that when a developer
gets stuck he can immediately ask for help from the project
manager who has to be available. “Immediate decisions”
means that decisions have to be made fast and not left to
later meetings, so that work can continue. This last practice
was felt to be more difficult to use across distances when
people making decisions might never have met face-to-face
and this can easily lengthen decision-making.

Frequent deliveries Project E used frequent deliveries
when designing and implementing a large customer spe-
cific system. The requirements were quite stable and well-
known. The customer company divided the work into small
tasks and specified, e.g., all windows and services in de-
tail. These well-specified tasks were then given to subcon-
tractors and internal sites for implementation. Specification
work and coding took place at the same time. Both a sub-
contractor company and an own subsidiary received tasks
for 2–3 weeks at the time. When the tasks were done, a
delivery was made, and new tasks were assigned. The prob-
lem with this way of working was that these delivered ser-
vices and windows had dependencies to other services or
windows, and the customer company could test them only
after all related functionality was ready. Therefore, getting
test results could sometimes take as long as half a year af-
ter code delivery. Clearly, this project would have benefited
from better synchronization of deliveries.

3.2. Benefits gained

Transparency of progress Frequent delivery cycles and
integration brought transparency of work progress to all
partners. When both the customer and the subcontractor

used IID, the subcontractor regularly delivered functioning
code during the development phase, e.g., monthly or even
weekly. Our interviewees told that when deliveries were in-
tegrated and tested right away this gave a very good picture
of how the project was progressing. They had noted that fre-
quent deliveries made it easier for the customer to monitor
the real progress of the subcontractor’s work.

Instant feedback Integration and testing reports gave dis-
tributed developers instant feedback on their work, which
they felt was very motivating. Moreover, when the customer
saw that the subcontractor was doing a good work, the cus-
tomer’s personnel started to trust and respect the subcon-
tractor and its developers’ know-how, which made further
collaboration easier.

Flexibility From the customer’s point of view IID brings
additional flexibility, when the customer can do changes
also during the development phase without time consum-
ing negotiations with subcontractors. Of course, a suitable
type of contracting has to be chosen. IID also enables the
customer company to take subcontractors into the project
already in the early phases of development, when require-
ments cannot yet be specified in detail. With this kind of
development process it is no longer necessary to specify all
requirements before subcontractors are involved; instead,
since requirements are allowed to change during the project,
work can start despite technological or goal-related uncer-
tainties. However, this requires all parties to have “an ex-
perimental mindset” and fast and open communication with
each others.

Ensuring joint understanding of requirements In IID
frequent integration and testing ensured that the subcontrac-
tor had understood the requirements correctly. This is a typ-
ical uncertainty in distributed development, especially when
companies have not worked together before and have dif-
ferent cultures. Frequent integration and testing gives fast
feedback and any misinterpretations become visible early.
Thus, possible misunderstandings have less damaging con-
sequences. Moreover, learning from mistakes is fast and
happens early, preventing problems from accumulating and
creating situations that are harder to resolve.

Avoiding “big bang” integration IID,as used in our case
companies, prevented different sites and partners from do-
ing too long periods of independent development, which
could have led to modules that would be hard or impossible
to integrate, i.e., they avoided possible problems that would
come from “a big bang integration”.

4. Discussion and Conclusions

Frequent communication is a central prerequisite for suc-
cessful implementation of IID in a distributed environment.
This way of development requires much more communica-
tion between parties during the whole collaboration com-
pared to development where work products can be clearly
separated into independently developed modules. Espe-
cially uncertainties in the form of changing requirements
demand communication and problem solving. In uncer-
tain environments short iteration cycles are needed to re-
veal problems as early as possible. The shorter the cycle the
more communication is needed to coordinate the work and
to quickly solve the problems during development. When
the cycles are longer the communication need is more con-
centrated to the integration phase. This communication
overhead is clearly an issue that requires careful planning
when implementing IID in a distributed environment.

Defining an iteration length that is suitable for distributed
development is an interesting topic. In our study both
projects A and B, used one week integration cycles suc-
cessfully also with subcontractors. Fowler [3] reported that
iteration cycles should not be shorter than two weeks in off-
shore projects due to communication overhead. One expla-
nation to this difference could be that in our study all par-
ties that participated in weekly iterations were from Europe
and therefore the time-zone difference was quite minimal.
Moreover, the subcontractor in project A had on-site per-
sonnel at the customer company, which facilitated commu-
nication. Fowler, however, worked with projects distributed
between India and Europe or North America, where time
differences are noteworthy.

4.1. Limitations

Our initial results presented in this paper are based only
on a few case projects, which limits our possibility to draw
far reaching conclusions. Moreover, when doing our first
interview round we did not concentrate on studying IID, but
asked about many other practices too. This means that we
could not collect as deep a knowledge on IID and related
practices that a more focused study could have provided.
The selection of our case projects did not concentrate on
finding interesting cases just from the point of view of IID.

4.2. Managerial Implications

We think that our results have several implications for
managers working with distributed development. First of
all, it seems that short increments are suitable for distributed
development, especially when the project faces high de-
grees of uncertainty. However, when using increments, it
is important that all partners use the same iteration length.

To enable reasonable testing of functionality, feature-
based development using tight control can be used. Also the
use of design and code reviews in the beginning especially
with new subcontractors helps to ensure that they have un-
derstood the coding standards and requirements correctly.
The feedback also motivates them. Finally, frequent com-
munication and problem solving is essential in distributed
IID. Efficient communication requires both planned com-
munication practices and assigned resources.

4.3. Future Research

In the future we plan to study additional case projects
using IID in distributed environments. We think that it is
important to get deeper insights on how these challeng-
ing projects really work, what kind of practices are used,
what the major problems are, for what kinds of projects this
model of working is suitable. Another interesting future re-
search topic is tool support for this kind of projects.

References

[1] R. Battin, R. Crocker, J. Kreidler, and K. Subramanian.
Leveraging resources in global software development.IEEE
Software, pages 70–77, March/April 2001.

[2] C. Ebert and P. De Neve. Surviving global software devel-
opment.IEEE Software, 18(2):62–69, 2001.

[3] M. Fowler. Using agile software proces with offshore de-
velopment.http://www.martinfowler.com/articles /agileOff-
shore.html, 7.1. 2004.

[4] J. Herbsleb and R. Grinter. Architectures, coordination,
and distance: Conway’s law and beyond.IEEE Software,
16(5):63–70, 1999.

[5] E. Karlsson, L. Andersson, and P. Leion. Daily build and
feature development in large distributed projects. InICSE-
2000, pages 649–658. IEEE Computer Society Press, 2000.

[6] C. Larman.Agile and Iterative Development: A Manager’s
Guide. Addison-Wesley, Reading, MA, 2003.

[7] C. Larman and V. Basili. Iterative and incremental develop-
ment: A brief history. IEEE Computer, pages 47–56, June
2003.

[8] A. Mockus and J. Herbsleb. Challenges of global software
development. In7th International Software Metrics Sympo-
sium, pages 182–184. IEEE Computer Society, 2001.

[9] M. Paasivaara. Communication needs, practices and sup-
porting structures in global inter-organizational software
development projects. InICSE International Workshop
on Global Software Development, Portland, Oregon, 2003.
IEEE Computer Society.

[10] M. Q. Patton.Qualitative evaluation and research methods.
Sage Publications, Newbury Park, Calif., 2nd edition, 1990.

[11] M. Simons. Internationally agile.InformIT, 15.3. 2002.
[12] R. K. Yin. Case Study Research: Design and Methods.

SAGE Publications, Thousand Oaks, CA, USA, 2nd edition,
1994.

