
Test-Driven Global Software Development

Bikram Sengupta Vibha Sinha Satish Chandra
IBM India Research Laboratory,

Block 1, Indian Institute of Technology, New Delhi 110016, India

Sharath Sampath K. Guru Prasad
IBM Global Services India Pvt. Ltd.,

Embassy Golf Links Level-3, Bangalore 560071, India
{bsengupt,vibha.sinha,satishchandra,ssampath,guruprasad}@in.ibm.com

Abstract

In a global software development project, distributed
teams need to have a consistent view of the system even in
the face of frequently changing requirements. Thus how pre-
cisely requirements and changes therein are communicated
to remote developers becomes a critical issue. In this po-
sition paper, we hypothesize that a test-driven methodology
may help keep development across multiple sites consistent
with changing requirements and with each other.

1 Introduction

According to the iterative model of software develop-
ment, a project cycle commences with requirements gather-
ing, followed by design, coding and testing; then the next
cycle begins. An underlying assumption of this view is
that once requirements are collected, they are generally sta-
ble through the rest of the cycle. However, the real-world
scenario differs considerably. Business cycles are shrink-
ing so rapidly these days that the boundaries between the
phases are getting blurred. Very often, by the time de-
velopers begin coding, customer requirements are already
changing. However, constantly having to change code to
meet new requirements is only one half of the problem; in
a large project spread across several development teams, a
greater challenge lies in ensuring that even as requirements
change, a consistent view of the system is maintained across
all the teams. Consider for example, a major enhancement
request that potentially affects the behavior of many mod-
ules; developers then need to clearly understand not only
what changes to make in their own module, but also how
the behavior of surrounding modules may change. In some
cases, the interface agreements may need to be modified; in

more subtle cases, there can be behavioral changes in those
modules, without any externally visible syntactic changes.
Unless there is a shared understanding about these changes,
the system may easily slip into an inconsistent state.

In a single-site project, developers usually rely on exten-
sive interactions to clarify doubts regarding requirements
and their impact on the behavior of various modules. When
the development environment becomes distributed how-
ever, face-to-face meetings, if any at all, are few and far
in between. There are e-mails, tele-conferences etc. no
doubt, but there is a practical limit to their efficacy when
it comes to developing a common understanding of the im-
precise, ever-changing textual documents that ususally con-
vey requirements. The physical distance and the differ-
ences in time-zones make multi-site operation inherently
disconnected in nature. Add to this the differences in cul-
tures, languages etc., and it is easy to see why semantic
information often do not get across uniformly to remote
sites. The resulting discrepancies in understanding intro-
duces delay [5] and may necessitate substantial re-work
during integration. Hence there is a need to complement
the usual forms of cross-site communication, with practi-
cal methodologies that can convey information (in require-
ments/interface agreements etc.) easily and precisely.

In this position paper, we propose a test-driven method-
ology to address some of the above challenges in global
software development. The basic idea is to create test suites
of the different modules prior to development, share them
across all the sites and use them as a medium of communi-
cation between development teams. For example, changes
in these test suites may be used to reflect changes in require-
ments or in module behavior. The shared understanding that
would result from this should help preserve overall consis-
tency.



2 Background

In this section, we (i) briefly discuss some existing ap-
proaches to precise behavioral descriptions and (ii) review
the notion of test driven development (TDD). We then de-
scribe how TDD can be viewed as another precise, although
incomplete, form of behavioral specification.

Precise Behavioral Specifications: The software indus-
try has long felt the need for unambiguous specification
techniques that developers can use. A number of formal
notations have thus been proposed over the years to bring
clarity and rigor to software development. These range from
mathematical formulations given as algebraic axioms [8] to
illustrate the behavior of class methods, to more accessible
languages like Eiffel [2], Java Modeling Language (JML)
[4], Object Constraint Language (OCL) [6] etc. that are
based on the Design By Contract paradigm [1], and use
method pre-conditions, post-conditions and class invariants
to succintly represent behavior. However, the acceptance of
these approaches in the industry has been low in general.
Developers are usually unwilling to learn one language for
implementation, and another for specification. The com-
plexity associated with these methods may also serve to dis-
courage users and moreover, their technical rigor is often
considered an overkill. Finally, they usually do not scale
up, and their application in industry-sized projects may be
simply infeasible. This points to the need for lightweight
but precise specification methodologies that may be used to
convey semantic information to developers, and which may
be easily integrated with their existing practices.

Test Driven Development: The idea behind Test Driven
Development [7] or TDD is simple: before implementing a
new functionality, first write executable unit test cases for
it. Once you have written enough test cases to thoroughly
check the new feature, write the actual code to pass these
test cases. The test cases thus become a mini-specification
of the functionality that was implemented. This then goes
on iteratively as more and more functionalities are added.
At the end, one not only has the complete implementation,
but also an efficient regression test bed capturing all the new
functionalities that were added, and which can be used to
identify if subsequent changes break anything in the exist-
ing system.

Test Suites as Behavioral Specification: In effect, TDD
is a novel approach of creating incomplete but precise spec-
ifications on-the-fly during development. Developers have
an implicit understanding of what a program is supposed
to do, and although they may not be able to specify this be-
havior formally (e.g. with JML like pre- and post conditions

or algebraic axioms), their understanding reflects in the test
suites they design. The test suites written prior to develop-
ment may thus be looked upon as a lightweight specification
that guides subsequent implementation. They are obviously
incomplete in a formal sense with respect to the full speci-
fication, but have several practical advantages: creating test
cases requires no new skills from developers, and the spec-
ification may be incrementally enriched by adding new test
cases as needed. Finally, test suites are unambiguous; from
the prespective of global development, this means that a test
suite should be interpreted in the same way by different re-
mote development teams.

3 Test-Driven Global Development

We now propose an approach whereby test suites are
used as a knowledge sharing medium between remote sites
in a distributed development environment. The idea is in-
spired by the TDD paradigm described above; just as unit
test cases written prior to development specify the function-
ality to be implemented, we believe that early availabilityof
module-wise test suites can serve as a precise documenta-
tion of requirements and of module behavior.

Early Test Suites In a typical software development en-
deavor, once requirements are formulated, some interme-
diate steps (e.g. use-case diagrams or scenarios) lead to a
high level design (modules, interfaces etc.). In a multi-site
environment, the modules (e.g. clusters of classes) are then
distributed across the remote sites for implementation. The
high-level design may be followed by a more detailed de-
sign at the remote sites, followed by implementation. Then
testing begins, starting with unit testing, to class and mod-
ule testing, to module integration testing, and finally system
level testing.

To adopt TDD in the multi-site context, we propose a
simple change to the process outlined above, by suggesting
that the end-products of high-level design should not only
be modules and interfaces, but also some module-wise test
suites jointly created by the system architects and the test-
ing team. These test suites can include unit test cases that
illustrate both the normal and exceptional behavior of the
public methods, as also functional test cases (e.g. sequences
of method calls) that can capture the way a client may use
a module. The test cases are associated with the interface,
and as such become a first class entity in the design space.
At the same time, the interface, usually only syntactic in
nature, becomes enriched semantically.

These test cases need not necessarily be fully executable
code, but should be precise enough to document the impor-
tant details e.g. the various input events, corresponding out-
puts, error-conditions etc. in a proper format. Such artifacts
arise naturally as part of testing activities, and executable



test cases can subsequently be derived out of them. It may
be noted here that, in practice, testing activities sometimes
do start before development e.g. test plan documents are
often created at the end of high-level design. These activ-
ities generally proceed in parallel to development, without
contributing to the development effort as such, till the test-
ing phase begins. We feel, however, that test cases may
also be looked upon as detailed specification entities, and if
these are created upfront and made available to developers,
then we can fill a gap between higher level requirements
and code. In a sense, test cases are the most precise form of
requirements, and their usefulness to developers in deriv-
ing requirements understanding has been noted by several
practitioners e.g. [3]. Developers work at the code and test
case level, so higher level requirements make more sense to
a developer if communicated through a medium he/she is
familiar with. Hence we also propose mapping the higher-
level requirements to these test cases, before coding starts.

Communication through Test Suites To keep dis-
tributed development teams in sync with requirements, we
next propose that requirements cannot be updated without
updates to the associated test cases. Thus for example:

• If a new requirement is added, create test cases for it,
and map the requirement to the test cases

• If a requirement is deleted, remove the test cases that
have become obsolete

• If a requirement is modified, modify related test cases
to clearly reflect this change

These actions have to take placebeforeany modification is
made to the code. In essence, we change the usual traceabil-
ity graph originating from the requirements and proceeding
through code towards test cases, by having test cases pre-
cede source code files instead of following them. Thus, dur-
ing impact analysis following a requirements change, the
test suites have to be updated first. Then these modifica-
tions in the test suites guide the developers in changing the
source code files.

Another advantage of early module-wise test suites may
be in illustrating the behavior of a module, sayM , to re-
mote developers who need to useM ’s functionality. In a
distributed environment, the development of the different
modules proceeds simultaneously and tillM becomes avail-
able, a remote developer who needs to useM would write
a dummy functionality based onM ’s interface. Interfaces
are primarily syntactic in nature, and are not a rich source
of information for someone who wants to use the associ-
ated module. However, if we have interfaces enriched with
test cases, then a developer, looking at the interface of a re-
mote class, would get a much more clear idea of its behavior
and how to use it. This may enable better simulation ofM

at a remote site, and thus smoothen subsequent integration
testing. Moreover, whenM ’s behavior needs to be mod-
ified in response to changing requirements, this may once
again be conveyed to developers of related modules through
changes in the interface test suite. Since test suites are much
more precise than text documents, and since they may be
made available through a central repository, the need for ex-
tensive cross-site communication should decrease, allowing
the sites to operate in a relatively disconnected manner.

Our proposal does not, in any way, seek to reduce the
importance of conventional post-development testing activ-
ities. These should be performed following well-established
testing principles, as always. Rigorous testing would defi-
nitely require more test cases than can be made available
in an early test suite, We believe, however, that if we use
test cases only for post-development testing at each site,
we make use of their power to validate an implementation,
but do not utilize their expressive power. By creating some
early test suites, we can not only use them during subse-
quent post-development testing, but also to convey precise
semantic information during actual development.

4 Future Work

We are currently investigating what kind of tool support
would be necessary to adopt some of the ideas described
above in practice. For future work, we would like to define
appropriate metrics to empirically determine the effective-
ness of our method in improving multi-site software devel-
opment.

References

[1] B.Meyer. Design by contract.Advances in Object-Oriented
Software Engineering, 1991.

[2] B.Meyer. Eiffel: The language. 1991.
[3] E.M.Maximilien and L.Williams. Assessing test-drivende-

velopment at IBM. 25th International Conference on Soft-
ware Engineering, pages 564–569, 2003.

[4] G.T.Leavens, A.L.Baker, and C.Ruby. Jml: A notation for
detailed design.Behaviroal Specifications of Businesses and
Systems, pages Chapter 12, 175 – 188, 1991.

[5] J.D.Herbsleb, A.Mockus, T.A.Finholt, and R.E.Grinter. Dis-
tance, dependencies and delay in a global collaboration.ACM
Conference on Computer Supported Collaborative Work,
pages 319–328, 2000.

[6] J.Warmer and A.Kleppe. The object constraint language,pre-
cise modeling with UML. 1999.

[7] K.Beck. Test driven development: By example. 2002.
[8] R.Doong and P.Frankl. The astoot approach to testing object-

oriented programs.ACM Transactions on Software Engineer-
ing and Methodologies, 1994.


