

Efficient Maintenance Support in Offshore Software Development: a Case Study
on a Global E-Commerce Project

Zheng Yan

Helsinki University of Technology
Software Business and Engineering Institute

POB 9210, FIN-02015 HUT, FINLAND
Zheng.Yan@hut.fi

Abstract

Software maintenance is a very important phase in
software development. It generally occupies the most of
development life cycle in order to ensure software quality.
This paper takes an e-commerce project as an example to
study how to efficiently provide software maintenance
support in offshore software development for a global
deployed software product. Through interviews and a
survey to the project developers, authors summarize the
good methods and approaches used in its maintenance
that greatly helped its success. Meanwhile, the authors
also study lessons that influenced its efficient
maintenance (e.g. extra workload caused by performance
tuning, troubles due to sharp time-difference, problem-
reproducing difficulty caused by testing environment
difference and slow code transfer). Suggestions for
further improvement are also proposed based on real
experiences in order to benefit similar software
development in the future.

1. Introduction

Offshore software development generally means that
software is developed through collaboration of a team in
an emerging country. It is one type of distributed software
development that is adopted by many companies [2].
Lower cost, plentiful skilled staffs, high quality and
trustworthy are main attractions for software development
abroad. However, the offshore software development also
faces difficulties and risks on decision-making,
coordination, execution, communications and project
management. There are many issues worth studying in the
offshore software development regarding how to
overcome its difficulties and reduce its risk. Amorbieta et
al. [2] and Muller et al. [7] discussed how to make a
decision on the offshore development, and how to choose
right partner, and successfully start, organize, manage and
execute this kind of projects.

Moreover, considering the software development,
maintenance is a very importance phase, which generally

occupies most of the software development time. It is a
necessity in order to ensure sound software quality. When
an offshore-developed software is used all over the world,
it becomes more difficult for an offshore software
development team to support the essential maintenance
when code development is over.

Nowadays, seldom work studies software
maintenance’s influence on the offshore software
development regarding the issues mentioned above. This
raised a number of doubts from our literature study,
comparing to our industrial experiences. For example, we
believe that the challenges in offshore software
maintenance may also affect the project decision-making
and execution. How to provide efficient maintenance
support in the offshore software development could be a
big challenge worth special study.

Regarding the maintenance, some existing results need
further study. For example, some work indicated that
round-the-clock development is one of the advantages
that benefit distributed software development by making
use of the time zone difference [4-6]. It is worth further
studying whether time difference can really benefit or
retard the offshore software maintenance, because we
experienced a lot of troubles to overcome the time
difference in an offshore software development project
that will be studied herein.

Culture liaison was introduced as a great help for
alleviating distance and leveraging resources in [3, 7].
Are culture difference and understanding difficulties the
only demand for a liaison role? What is the real need in
terms of the efficient offshore maintenance? These
questions are also worth studying, especially based on
real cases.

Generally, the projects that require limited interaction
with customers and have low strategic importance and
high market capacity are treated suitable for the offshore
development in [2, 7]. However, for a global e-commerce
project that has more additional challenges than other
software projects [1], but developed successfully offshore
like the case we will study herein, good approaches used
and challenges or lessons learned in its maintenance are

mailto:Zzheng.z.Yyan@hut.finokia.com

especially worth studying in order to extend the theory of
offshore software development.

All of above are motivations of this paper. In this
paper, we will take a global e-commerce project (GEC
hereafter) as an example to analyze the reasons behind its
great success and problems/lessons that are worth
learning for future offshore software development. The
focus will be on software maintenance: how to efficiently
support the software maintenance in offshore e-commerce
software development.

2. GEC overview

GEC was a web-based service for a global company’s
partners to order various company products. It was
installed at a number of fulfillment sites to support
product ordering from any country in the world. It was
believed as the biggest B2B e-commerce system in 2000.
This system greatly reduced ordering cost, tremendously
improved the efficiency of ordering procedure and
provided great convenience for both the company and its
partners.

GEC provided global automatic management on
products ordering, processing and order-maintaining for
one of the biggest global companies in the world
(customer company hereafter). Its main software was
outsource-developed at a company in Singapore (provider
company hereafter) during 1998-2001. The provider
company completed the GEC software development and
maintenance support on totally eight product versions,
until the system was very stable and most features’
implementation had been done. The system is currently
maintained and enhanced by the customer company.

The GEC project was a project executed at different
places all over the world. There were totally about fifty
persons involved into this project at the provider’s
company including a development team and a testing
team. Figure 1 shows its execution map. At the GEC
software maintenance phase, the cooperation among
different teams located at different places was needed in
order to solve a problem.

Figure 1: GEC project execution map

The GEC maintenance included several phases after
the code development was finished. In this paper, we
focus our discussion on the software maintenance
conducted at Singapore. Figure 2 illustrates the
maintenance phases of the GEC software.

The first phase of maintenance was conducted after the
code was built and installed at the local test server in the
provider company. The second phase of maintenance was
conducted after the local testing passed. The build was
uploaded to the testing server located at Place 1, US. The
customer company’s testing team there retested the
software. The third phase of maintenance was started
after the build was installed at the pre-product server at
Place 1, US. The testing team of the customer company
continued the test on more complicated use cases. The
forth phase of maintenance was also required if there was
any problem found in the product used by the GEC users
all over the world. Generally, the product problems were
emergent and required to be solved immediately because
they directly affected the customer’s business.

If there was a problem found in the maintenance
phases, the testers either in Singapore or in US reported it
using a team-connection tool. The development team
could check and reply to the problem report after the fix
was done. The team-connection tool managed all problem
reports and processing history. Generally, the
maintenance work was conducted in parallel with new
version’s development; especially the third phase and
forth phase maintenance.

Figure 2: Maintenance phases of GEC software

3. Research questions and methodology

GEC was a successful B2B e-commerce system that
brought a lot of benefits for the customer company’s
global sale. What we intend to study herein is the merits
that benefited the GEC maintenance and the lessons that
influenced the maintenance efficiency, as well as the
aspects worth further improvement. This is because
software maintenance support is one of the crucial aspects
that influence the whole project’s success. In addition, we
also aim to clarify the questions mentioned in the
introduction through the case study on GEC.

In order to conduct our research, we designed
questionnaire and distributed it to all GEC developers for
their feedback. The questionnaire was designed based on
the first author’s personal experience in the GEC
development. The first author participated the GEC’s
development and maintenance on most versions as a

component leader. We received pieces of feedback. The
questionnaire includes three parts:
• Participator’s basic information regarding personal role

inside the GEC project and contributions: Based on this
part, we can identify the importance of response.

• Factors that affected the maintenance success: We asked
the participators to mark the importance of those factors
that we thought benefited the GEC maintenance.

• Potentiality for further improvement: In this part, we
tried to propose questions in order to study over-time
hard work’s influence on maintenance efficiency, the
reasons of extra maintenance work caused by
performance issues, opinions on the difficulties of
maintenance support in the GEC, and the reasons that
caused the maintenance delay, as well as the hardness of
code transference from old responsible person to the
new one and from the provider company to the
customer company.

Apart from the questionnaire, we also telephony
interviewed several GEC developers. These interviewees
are software component leaders from whom we can get to
know all software components’ maintenance information.
One of them is the only person experienced all versions’
development and maintenance. The main questions asked
in the interview are shown in Table 1.

Table 1: Interview questions
1 Which event you experienced in the GEC maintenance gave you

deepest impression?
2 What do you think the worst aspects that greatly influenced the

efficient maintenance in GEC?
3 What do you think the good methods or approaches used that

benefited the GEC maintenance?
4 What do you think the main reasons that delayed or benefited your

maintenance work?
5 What is the reason that caused performance issue?
6 What is your opinion on improving the efficiency of GEC

maintenance? What are your suggestions?
7 What do you like in GEC? What do you dislike?

In the telephony interview, we tried to get direct
feedback on advantages and disadvantages experienced in
the GEC maintenance. Especially, we got to know the
interviewees’ personal opinions on further improvement
in order to overcome those bad factors that greatly
influenced the maintenance efficiency. Each interview
lasted for more than one hour. The interviewees provided
valuable answers for each question. Through interview to
them, we got a complete perspective on the whole GEC
maintenance work.

4. Results

The results we got from the questionnaire and
interviews are studied and analyzed as follows.

4.1 Factors benefiting successful maintenance

Based on the questionnaire and interviews, we
specified the factors that benefited the GEC maintenance
as follows.

It seems that the most important factor for efficient
maintenance was attitude and relationship between the
development team and its customer. With good attitude
and relationship, mutual understanding was easier to
build up in order to make trade-off on many issues at both
sides. For example, the customer could be easier to
understand the reasons of delay on problem solving if
they knew the barriers and the hard work at the remote
site. The development team would more like to accept
extra requirements in urgent and offered solutions as soon
as possible.

Compatible development/maintenance environment
and efficient communications with the customer were also
very important for efficient maintenance. But the provider
company’s maintenance environment was not perfect to
support efficient maintenance. Both testers at US and
Singapore did not share the same testing-system
Database. This was one of the reasons that made it hard to
reproduce the same problem in Singapore, but reported by
the tester in US.

The tools such as project pager and approaches (e.g.
sending liaison engineer and time-shift work) also played
an important role for the efficient maintenance. The
project pager was used in project emergency cases. For
example, if there was a big problem found in product, the
GEC help desk called the project pager. The pager taker
at Singapore should call back and get to know the request
for urgent maintenance support, even thought at midnight.
On the other side, the provider company generally sent a
liaison engineer to place 1, US for on-site maintenance
support after the first maintenance phase. In addition, a
development engineer was also arranged to work at
Singapore nighttime, but daytime of US, to support
immediate maintenance.

Since the project was big, it was impossible for one
person to know all components of the whole system.
Generally, it was hard for one liaison engineer and one
time-shift developer to solve various problems raised at
Singapore nighttime. Generally, they tried to look at the
problem, but without any sense to solve the problem.
They tried to console the customer until the next morning.
They delayed time in order to let the responsible
developers have enough time to rest at night, so that they
could work efficiently next day. At the same time, they
consoled the customer by giving them some feedback to
make them feel that the problem was processing at the
remote site.

Expert support was also very essential for performance
issue. For example, the provider company lacked experts
on DB2. The DB2 query caused a lot of performance
problems since the database structure is very complicated
in order to support the customer’s business logic. In order

to help the development team, the customer sent a DB2
expert to Singapore. The face-to-face discussion
effectively helped the performance tuning work at the
maintenance phase.

Other factors that benefited the maintenance work are
also important, but those are common factors for both
distributed software maintenance and centralized software
maintenance.

4.2 Improvement potentiality

Based on the results from the questionnaire and

interviews, we summarize the lessons learned from the
GEC maintenance in order to seek potentiality for further
improvement.

4.2.1 Influence of over-time work. Over-time work was
hated by all developers participated in the GEC,
especially long-time over-time working (e.g. work from
10am in the morning to 3am next morning for two weeks
or work over 3 hours every day for more than one month,
which was normal during GEC maintenance). If working
over-time, it is impossible to work efficiently and more
mistakes may be made because of fatigue. But over-time
working was generally forced to do, which happened
mostly at maintenance phases if there were urgent
problems to fix.

4.2.2 Reasons of extra maintenance work caused by
performance issue. Performance issue found later on
when the GEC had launched caused a lot of extra
maintenance work. This kind of extra work sometimes
greatly affected the whole project’s schedule. The
following reasons were pointed out as importance by the
interviewees.

The first reason was that the software designers lacked
experience on B2B e-commerce software. They had no
much idea which aspects should be paid special attention
in the design. GEC is one of the earliest E-commerce
applications. It is also among the biggest ones in the
world. At that time, no many people held real experience
on such kind of software development. In addition, the
platform APIs used for GEC development were not
mature either.

The second reason was that the software designers at
the provider company lacked concrete knowledge on real
usage scale and system execution scenarios. Due to tight
time schedule required by the customer, performance is
not seriously considered at the software design phase.

The third reason was caused by the rapid growth of the
GEC usage. The system scale was greatly enlarged within
a short period. The initial success also encouraged the
customer to deploy this system as broad as possible for its
business partners all over the world. This raised many
new requirements regarding performance improvement.

The dynamic system growth was actually very hard to be
anticipated at the design phase.

Herein, experiences were more crucial than
technologies in order to avoid performance issue found
later in the software product.

4.2.3 Difficulties for maintenance support. Based on
the results of questionnaire and interviews, we found that
the difficulties of maintenance support were generally
caused by long-distance between the customer and the
development team. The long-distance made face-to-face
communication difficult, which further caused
misunderstanding on the business requirements. It also
caused time-difference, which, treated as beneficial for
round-the-clock efficient software development, actually
brought a lot of trouble in the GEC maintenance. The
time difference made prompt support on product problem
difficult and made it delayed to get feedback from the
remote sites.

In addition, the product database was highly
confidential. If the product database access was necessary
for troubleshooting, the access duration issued was
generally quite limited, which made the developers feel
big pressure, not mention that the network connection
was very slow. Limited accessible machines to the
product system sometimes made trouble-shooters have to
wait in a queue.

4.2.4 Reasons of maintenance delay. The main reason
agreed by most developers about maintenance delay was
the difficulties to simulate and re-produce the problem in
the local environment. The database data applied for local
maintenance were totally different from those for the
customer’s testing and were obvious distinct from the
product. This caused a lot of trouble in reproducing the
reported problems. Besides, the execution environment
for development was different from the product execution
environment. This was another reason made problem
simulation difficult.

In addition, the difficulty to exchange idea regarding
problems was also an important reason caused the
maintenance delay. As commented by an interviewee, he
sometimes had to wait until next day in order to get
confirmation on some issue. If more discussion needed,
longer delay might occur.

Apart from the above, developers’ personal reasons
and lack of project training might also cause maintenance
delay. But those were not treated as so important.

4.2.5 Problems of slow code transference. Due to the
frequent resource shifting in IT projects, it is generally
impossible for one person to take charge of one software
component in all life cycle of a software product. This
introduces a practical symptom: responsibility transfer.
The slow transfer also affected the GEC maintenance

seriously. This was mainly caused by the following
reasons.
1. Lacking formal project training due to tight project
schedule: The new responsible person is not so familiar
with the project that he/she has to spend longer time to
solve the problem.
2. Job competition: The old developer had pressure to be
taken over by the new one. So he provided blur technical
documents and code comments, and explained the code
design carelessly. Similarly, the provider company also
faced pressure if the customer withdrew the project.
3. No standard document format, coding format and
design pattern deployed: This made new comers difficult
to read and understand the code written by other people.

The above reasons also influenced the code transfer
from the provider company to the customer’s
maintenance team after the contract was finished.

5. Discussion

5.1 Managerial implications

Based on the lessons learned from the GEC

maintenance, we provide some suggestions for other
offshore software projects.

Firstly, it is important design a series of working
procedure in order to formalize the project management.
It is necessary to make proper project schedule that saves
some space for emergent events that may happen later on.
Furthermore, it is also wise to make agreement with the
customer regarding the solutions on emergency
maintenance support, e.g. the accepted rules and policies
for additional requirements raised from the product
problems. In short, efforts should be made at the
contracting phase to evade unnecessary argument that
may occur in the maintenance phases. This is also a good
approach to avoid hard over-time work that greatly
affects the efficiency.

Secondly, it is crucial to pay special attention to
performance issue and system scalability in the system
software design. It is suggested to invite experienced
experts to participate the design on related design issues
and make instructions on software development regarding
system performance that could guide the developers’
programming in general. The customer should provide
enough information to its partner about system scalability.
It is suggested to provide a paper document to specify the
maximum scale of the system, e.g. the size of some
database table in the product, the quantity of a normal
user’s order request. With these approaches, extra
performance tuning cost and work could be greatly
reduced.

Thirdly, communication problem and time difference
raised by the long distance is generally hard to overcome
in the offshore software maintenance. It is better to

introduce efficient communication tools for easy contact.
Many literature studies have proposed a lot of good
suggestions on this aspect [8]. But on-line communication
or instant message is retarded by the time-difference. If
efficiency on maintenance is more important, sending
enough technical liaison engineers to the customer site is
an effective method. But this may increase the travel cost.
Those technical liaison engineers should be qualified
enough to handle most of urgent system problems. One
liaison engineer is impossible to know every aspect of a
big project, so it is impossible for him/her to solve all
kinds of problems.

Fourthly, It is better to provide as good as possible
equipment to improve the remote access speed for remote
problem solving and establish as similar as possible
maintenance environment at the local development site.
These will benefit problem re-producing.

Finally, It is essential to standardize offshore software
project management and organization in terms of efficient
code transfer. Project members should be trained for both
project general purpose and their personal role purpose. A
formalized project document template, coding template
and design pattern should be introduced to the project
members. This kind of training is a necessity in order to
work out uniformed project software.

5.2 Comparison of own results to literature

Maintenance is a very importance phase in the

software development. For the offshore software
development, the maintenance brings a lot of challenges.
Many challenges are actually caused by those advantages
that people think could benefit the development according
to the GEC experiences, e.g. round-the-clock
development actually delays the maintenance; cost saving
is normally not true at the maintenance phase because
skilled developers are needed to work at the customer site
in order to support on-site maintenance. Whilst the
development site should also provide maintenance
support as usual. The cost is obviously increased if hiring
more people. If keeping the same resources, workload
will definitely increase that will finally affect the
efficiency of maintenance. All of challenges raised by the
maintenance should and must be considered when the
customer makes decision on outsourcing. The potential
extra cost and difficulties that may be caused at the
maintenance phase should be seriously considered and
calculated at the decision making and contracting stages.
Obviously, the maintenance related formal management
should be involved into the offshore development
management.

Based on our case study, we think it is more
challengeable to provide sound maintenance support for
globally deployed software product in the offshore
development. The issues raised at the maintenance phase

are actually ignored in the current literature study. In
Table 2, we summarize the research results based on the
GEC experiences regarding the maintenance and compare
them to the current literature.

Table 2: Research results and comparison to
literature

Problems Good solutions / suggestions Literature study
Hard to build up
mutual
understanding to
make trade-off on
many issues at
both sides

The provider keeps good
attitude and relationship with
the customer (This should be
seriously considered at the
decision making phase on
partner selection.)

N.A. Trustworthy
is not considered
in [2, 7] for
offshore software
development

Hard to reproduce
the same problem
by the
development
team, but reported
by the product
users

Set up compatible
development/maintenance
environment with the product
system, prefer as same as
possible maintenance
environment as the product
system; provide sound
equipments to access the
product system for trouble
shooting

N.A.

Maintenance
delay caused by
time difference

Set up efficient
communications with the
customer, e.g. making use of
project pager for urgent
maintenance support; sending
enough technical liaison
engineers to the customer site
for local support; time-shift
working in order to provide
prompt support

Efficient
communication
tools are studied
in [8]. However,
no work proposed
technical liaison
engineers’ great
help and time-
shift working for
software
maintenance

Troubles in
maintenance
raised by
performance issue

Invite experts to the
provider’s site to cooperate
with the development team
for performance tuning issue;
pay special attention to
performance on the design;
provide as detail as possible
scalability description to the
provider company; define
programming regulations for
better performance

N.A.

Hard over-time
work that greatly
affects efficiency

Design a series of working
procedure in order to
formalize the project
management; consider urgent
maintenance issues at
contracting and project
scheduling

N.A.

Long term code
transfer internally
and to the
customer

Standardize offshore
software project management
and organization; train
project members regarding
formalized project document
template, coding template
and design pattern

N.A.

6. Conclusions and future work

In this paper, the authors studied the maintenance
efficiency in offshore software development based on a
real case study. According to the questionnaire and

interview results, the authors summarized the good points
that benefited the GEC maintenance and studied the bad
sides that influenced its maintenance efficiency. In order
to overcome and avoid those disadvantages experienced
in the GEC, the authors further proposed several
suggestions that could be referred by similar software
development in the future.

Based on the practical experience and the GEC
success, the authors believe big global e-commerce
project can also be developed offshore although
additional challenges need special consideration. The
paper proposed some good solutions for potential
problems that mostly have not been considered in the
literature regarding the maintenance of offshore-
developed software.

Since our work is only based on one real case study,
the results achieved are only for reference purpose. Future
work includes studying a set of efficient maintenance
models that can be applied into various distributed
software development. It is also significant to define a
series of guidelines that could instruct maintenance
agreement generation and execution.

References

[1] Alan R. Hevner, Rosann W. Collins, Monica J. Garfield,
“Product and Project Challenges in Eletronic Commerce
Software Development”, ACM SIGMIS Database, Volume 33
Issue 4, December, 2002.
[2] Amorbieta, I., Bhaumik, K., Kanakamedala, K. & Parkhe,
A., “Programmers Abroad: A Primer on Offshore Software
Development”, The McKinsey Quarterly, No.2, 2001.
[3] Battin, R.D., Crocker, R., Kreidler, J. & Subramanian, K.,
“Leveraging Resources in Global Software Development”,
IEEE Software, March/April, 2001.
[4] Dedene, G. & De Vreese, J.-P., “Realities of off-shore
reengineering”, IEEE Software, Volume: 12 Issue: 1, Page(s):
35 –45, Jan. 1995.
[5] Herbsleb J.D., Mockus A., Finholt T. A. & Grinter R. E.,
“An Empritical Study of Global Software Development:
Distance and Speed”, in Proceedings of the 23rd International
Conference on Software Engineering, July, 2001.
[6] Mockus, A. & Herbsleb, J., “Challenges of Global Software
Development”, in Proceedings of Seventh International
Conference of Software Metrics Symposium METRICS 2001,
IEEE, pp182-184.
[7] Muller R., Ruland, D., Hoch, D., & Klosterkemper, B.
“Offshore Software Development in Emerging Countries”,
McKinsey & Company, Articles volumn one – IT Management.
[8] Herbsleb J.D., Mockus A., “An Empritical Study of Speed
and Communication in Global Distributed Software
Development”, IEEE Transactions on Software Engineering,
Volume: 29 Issue: 6, June 2001, pp481-494.

	Efficient Maintenance Support in Offshore Software Development: a Case Study on a Global E-Commerce Project

